51-04
Exome sequencing of post-menopausal ER+ breast cancer (BC) treated pre-surgically with aromatase inhibitors (AIs) in the POETIC trial (CRUK/07/015)

Dr. Gellert: Nothing to disclose.
Dr. Segal: Nothing to disclose.
Dr. Goo: Nothing to disclose.
Dr. Li: Nothing to disclose.
Dr. Miller: Nothing to disclose.
Dr. Mardis: Nothing to disclose.
Dr. Martin: Contract, AstraZeneca, Pfizer, PUMA.
Dr. Holcombe: Nothing to disclose.
Dr. Skene: Nothing to disclose.
Dr. Bliss: Nothing to disclose.
Dr. Robertson: Nothing to disclose.
Dr. Smith: Nothing to disclose.

Dr. Dowsett: Contract, AstraZeneca.
Dr. POETIC Trial Management Group and Trialists: Nothing to disclose.
Exome sequencing of post-menopausal ER+ breast cancer treated presurgically with aromatase inhibitors in the POETIC trial (CRUK/07/015)

Corrinne Segal, Qiong Gao, Pascal Gellert, Lesley-Ann Martin, Tiandao Li, Christopher Miller, Charles Lu, Elaine Mardis, John Robertson, Judith Bliss, Alexa Gillman, Ian Smith, Manuela Graf, Elena Lopez-Knowles, Kally Sidhu, Christopher Holcombe, Anthony Skene, Mitch Dowsett on behalf of the POETIC Trial Management Group and Trialists

Making the discoveries that defeat cancer

This presentation is the intellectual property of the author/presenter contact at pascal.gellert@icr.ac.uk (permission to reprint and/or distribute.)

San Antonio Breast Cancer Symposium, December 9-13, 2014

Background

• Assessment of somatic mutations is becoming increasingly important for patient management
• Pre-surgical studies may predict responsiveness to treatment
• Sub-clonality increases complexity and potentially leads to resistance to therapy
• Limited biopsy material, often <1% of tumour

This presentation is the intellectual property of the author/presenter contact at pascal.gellert@icr.ac.uk (permission to reprint and/or distribute.)
Introduction

Poetic PeriOperative Endocrine Therapy - Individualising Care

Baseline

\[\text{c.2 weeks} \]

4,486 patients randomised to perioperative AI Rx (letrozole or anastrozole) vs. no perioperative Rx

Surgery

biopsy

biopsy or excision biopsy

This presentation is the intellectual property of the authors, and contact at pascal.geller@icr.ac.uk for permission to reprint and/or distribute.

Aims

1. To determine the reproducibility of mutational profiles and sub-clonality between core-cut biopsies

2. To determine the impact of 2-weeks’ AI therapy on mutations and sub-clonality

3. To identify mutations or patterns of mutations associated with poor anti-proliferative response to AI treatment.

This presentation is the intellectual property of the authors, and contact at pascal.geller@icr.ac.uk for permission to reprint and/or distribute.
Patient/Sample selection

Whole exome sequencing
- 40x coverage

Targeted sequencing
- 13,372 regions selected from exome-seq and 79 breast cancer related genes
- 100x coverage

Mutational landscape

Somatic mutations in 102 samples validated by targeted-sequencing:
- 5,684 somatic mutations across all samples
- 55.7 of somatic mutations per sample on average (median 35)
- 3,261 affected genes

All 102 samples
- 53.26% (3616) missense
- 23.13% (1322) silent
- 5.23% (299) InDel
- 5.27% (301) nonsense
- 1.75% (100) splice site
- 1.36% (78) RNA

Total = 5684
Mutational landscape

Mutation count per sample/pair
- Good concordance between baseline and surgery

Two samples are outliers
- Sample pairs from the same patient based on SNP profile
- High normal contamination in one sample of each pair

Differences between groups
GR vs. PR vs. Control

- Poor responders have higher mutation load than Good responders
- Tendency for more TP53 mutated genes in Poor
Significantly mutated genes

Genes showing a significantly higher mutation rate than the background mutation rate

Known BC driver genes:
- **PIK3CA** (35%)
- **TP53** (28%)
- **CDH1** (14%)
- **GATA3** (6%)
- **MAP3K1** (6%)
- **MAP2K4** (5%)

Novel BC driver genes:
- **CENPF** (6%)
- **HTR1A** (3%)
- **HEATR7B2** (9%)
- **C22orf23** (1%)

Overall concordance: 80%

(without outliers: 83%)

This presentation is the intellectual property of the author. Please contact at pascal.gallet@icr.ac.uk for permission to reprint and/or distribute.
Sub-clonality within patients

- Estimation of sub-clonality by variance allele fractions (VAF)
- Some patients show clear sub-clonality

This presentation is the intellectual property of the author/presented and must not be reprinted without permission.
Treatment effect on mutations

- Mutation count slightly lower in surgery than baseline for treated samples (median -2.5 mutations)
- VAF significantly lower for mutations in Good and to a less extent in Poor

Conclusions

1. To determine the reproducibility between core-cut biopsies.
 - Multiple sub-clones present in ER+ breast cancer
 - Mutations/sub-clones exclusive to one of the core-cuts in ~20%
 - Functional driver mutation found in both samples of the tumours in ~80%

2. To determine the impact of 2-weeks’ AI therapy.
 - Differences in mutation count before and after treatment were statistically significant, but minor

3. To identify mutations associated with poor response to AI treatment.
 - Increased mutation load, possibly resulting from mutated TP53 status, associated with poor anti-proliferative response
 - A larger study with more power is needed to find further associations
Acknowledgements

Poetic
Trial Management Group, trialists and patients

Cancer Research UK
C1491/A8671/CRUK/07/015, C1491/A15955, C406/A8962

Breast Cancer Breakthrough
NIHR RM/ICR Biomedical Research Centre
ICR-CTSU

This presentation is the intellectual property of the authors. Please contact at pascal.gallot@icr.ac.uk for permission to reprint and/or distribute.